capreolus.reranker.CEDRKNRM
¶
Module Contents¶
Classes¶
Base class for Reranker modules. The purpose of a Reranker is to predict relevance scores for input documents. Rerankers are generally supervised methods implemented in PyTorch or TensorFlow. |
-
class
capreolus.reranker.CEDRKNRM.
CEDRKNRM_Class
(extractor, config, *args, **kwargs)[source]¶ Bases:
torch.nn.Module
-
class
capreolus.reranker.CEDRKNRM.
CEDRKNRM
(config=None, provide=None, share_dependency_objects=False, build=True)[source]¶ Bases:
capreolus.reranker.Reranker
Base class for Reranker modules. The purpose of a Reranker is to predict relevance scores for input documents. Rerankers are generally supervised methods implemented in PyTorch or TensorFlow.
- Modules should provide:
a
build_model
method that initializes the model useda
score
and atest
method that take a representation created by anExtractor
module as input and return document scoresa
load_weights
and asave_weights
method, if the base class’ PyTorch methods cannot be used