Capreolus is a toolkit for constructing flexible ad hoc retrieval pipelines. Capreolus pipelines can be run via a Python or command line interface.

Want to jump in? Get started with a Notebook. Open in Colab

Capreolus is organized around the idea of interchangeable and configurable modules, such as a neural Reranker or a first stage Searcher. Researchers can implement new module classes, such as a new neural Reranker, to experiment with a new module while controlling for all other variables in the pipeline (e.g., the first stage ranking method and its parameters, folds used for cross-validation, tokenization and embeddings if applicable used with the reranker, neural training options like the number of iterations, batch size, and loss function, etc).

Since Capreolus v0.2, pipelines are instances of the Task module and can be combined like any other module. For example, the RerankTask implements a “search-then-rerank” pipeline by running RankTask and reranking its output. Both Task modules respect the same folds (provided by a Benchmark) and can be configured independently (e.g., to optimize for different metrics).

Looking for the code? Find Capreolus on GitHub.

Looking for the previous “search-then-rerank” pipeline that was presented in the WSDM‘20 demo paper? Check out Capreolus v0.1 and the corresponding documentation.