import torch
import torch.nn as nn
import torch.nn.functional as F
from capreolus import ConfigOption
from capreolus.reranker import Reranker
from capreolus.reranker.common import SimilarityMatrix, create_emb_layer
from capreolus.utils.loginit import get_logger
[docs]logger = get_logger(__name__) # pylint: disable=invalid-name
[docs]class DRMMTKS_class(nn.Module):
def __init__(self, extractor, config):
super(DRMMTKS_class, self).__init__()
self.topk = config["topk"]
self.gate_type = config["gateType"]
self.embedding = create_emb_layer(extractor.embeddings, non_trainable=config["freezeemb"])
self.simmat = SimilarityMatrix(self.embedding)
self.ffw = nn.Sequential(nn.Linear(self.topk, 1), nn.Tanh())
gate_inp_dim = 1 if self.gate_type == "IDF" else self.embedding.weight.size(-1)
self.gates = nn.Linear(gate_inp_dim, 1, bias=False) # for idf scalar
self.output_layer = nn.Linear(1, 1)
# initialize FC and gate weight in the same way as MatchZoo
nn.init.uniform_(self.ffw[0].weight, -0.1, 0.1)
nn.init.uniform_(self.gates.weight, -0.01, 0.01)
def _term_gate(self, queries, query_idf, q_masks):
"""
: param queries: (B, Tq, H)
: param query_idf: (B, Tq)
: param q_masks: (B, Tq)
"""
atten_mask = (1 - q_masks) * -1e7
if self.gate_type == "IDF":
gate_prob = self.gates(query_idf[:, :, None]).squeeze() + atten_mask # (B, 1)
elif self.gate_type == "TV":
gate_prob = self.gates(queries).squeeze() + atten_mask # (B, Tq)
else:
raise ValueError("Invalid value for histType: histType should be 'CH', 'NH', or 'LCH'")
gate_prob = F.softmax(gate_prob, dim=1) # (B, Tq)
return gate_prob
[docs] def forward(self, doc, query, query_idf):
query_sent_mask = (query != 0).float() # (B, Q)
sent_pad_pos = (doc == 0).float() # (B, D)
query_idf = query_idf.float()
cos_mat = self.simmat(query, doc)
topk, _ = torch.topk(cos_mat, k=self.topk, dim=-1) # (B, Q, k)
ffw_vec = self.ffw(topk).squeeze() # (B, Q)
w = self._term_gate(query, query_idf, query_sent_mask) # (B, Q)
doc = (w * ffw_vec).sum(dim=-1, keepdim=True) # (B, 1)
score = self.output_layer(doc)
return score
[docs]dtype = torch.FloatTensor
@Reranker.register
[docs]class DRMMTKS(Reranker):
"""Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. 2016. A Deep Relevance Matching Model for Ad-hoc Retrieval. In CIKM'16."""
# reference: https://github.com/NTMC-Community/MatchZoo-py/blob/master/matchzoo/models/drmmtks.py
[docs] module_name = "DRMMTKS"
[docs] config_spec = [
ConfigOption("topk", 10, "number of bins in matching histogram"),
ConfigOption("gateType", "IDF", "term gate type: TV or IDF"),
ConfigOption("freezeemb", True, "term gate type: TV or IDF"),
]
[docs] def build_model(self):
if not hasattr(self, "model"):
self.model = DRMMTKS_class(self.extractor, self.config)
return self.model
[docs] def score(self, d):
query_idf = d["query_idf"]
query_sentence = d["query"]
pos_sentence, neg_sentence = d["posdoc"], d["negdoc"]
return [
self.model(pos_sentence, query_sentence, query_idf).view(-1),
self.model(neg_sentence, query_sentence, query_idf).view(-1),
]
[docs] def test(self, d):
query_idf = d["query_idf"]
query_sentence = d["query"]
pos_sentence = d["posdoc"]
return self.model(pos_sentence, query_sentence, query_idf).view(-1)